A Unified Approach to Measurement Error and Missing Data: Overview and Applications

نویسندگان

  • Matthew Blackwell
  • James Honaker
  • Gary King
چکیده

Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model dependence, difficult computation, or inapplicability with multiple mismeasured variables. We develop an easy-to-use alternative without these problems; it generalizes the popular multiple imputation (MI) framework by treating missing data problems as a limiting special case of extreme measurement error and corrects for both. Like MI, the proposed framework is a simple two-step procedure, so that in the second step researchers can use whatever statistical method they would have if there had been no problem in the first place. We also offer empirical illustrations, open source software that implements all the methods described herein, and a companion article with technical details and extensions. 1 Institute for Quantitative Social Science, Harvard University, Cambridge, MA, USA Corresponding Author: Gary King, Harvard University, Institute for Quantitative Social Science, 1737 Cambridge Street, Cambridge, MA 02138, USA. Email: [email protected] Sociological Methods & Research 2017, Vol. 46(3) 303-341 a The Author(s) 2015 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/0049124115585360 journals.sagepub.com/home/smr

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Performance Analysis Of Mono-bit Digital Instantaneous Frequency Measurement (Difm) Device

Instantaneous Frequency Measurement (IFM) devices are the essential parts of anyESM, ELINT, and RWR receiver. Analog IFMs have been used for several decades. However, thesedevices are bulky, complex and expensive. Nowadays, there is a great interest in developing a wideband, high dynamic range, and accurate Digital IFMs. One Digital IFM that has suitably reached allthese requirements is mono-bi...

متن کامل

Simultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)

In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

Efficiency evaluation of wheat farming: a network data envelopment analysis approach

Traditional data envelopment analysis (DEA) models deal with measurement of relative efficiency of decision making units (DMUs) in which multiple-inputs consumed to produce multiple-outputs. One of the drawbacks of these models is neglecting internal processes of each system, which may have intermediate products and/or independent inputs and/or outputs. In this paper some methods which are usab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015